Let C be the boundary of the region in the first quadrant bounded by the x-axis, a quarter-circle with radius 9, and the y-axis, oriented counterclockwise starting from the origin. Label the edges of the boundary as C1,C2,C3 starting from the bottom edge going counterclockwise. Give each edge a constant speed parametrization with domain 0≤t≤1.

Respuesta :

Solution :

Along the edge [tex]$C_1$[/tex]

The parametric equation for [tex]$C_1$[/tex] is given :

[tex]$x_1(t) = 9t , y_2(t) = 0 \ \ for \ \ 0 \leq t \leq 1$[/tex]

Along edge [tex]$C_2$[/tex]

The curve here is a quarter circle with the radius 9. Therefore, the parametric equation with the domain [tex]$0 \leq t \leq 1 $[/tex] is then given by :

[tex]$x_2(t) = 9 \cos \left(\frac{\pi }{2}t\right)$[/tex]

[tex]$y_2(t) = 9 \sin \left(\frac{\pi }{2}t\right)$[/tex]

Along edge [tex]$C_3$[/tex]

The parametric equation for [tex]$C_3$[/tex] is :

[tex]$x_1(t) = 0, \ \ \ y_2(t) = 9t \ \ \ for \ 0 \leq t \leq 1$[/tex]

Now,

x = 9t, ⇒ dx = 9 dt

y = 0, ⇒ dy = 0

[tex]$\int_{C_{1}}y^2 x dx + x^2 y dy = \int_0^1 (0)(0)+(0)(0) = 0$[/tex]

And

[tex]$x(t) = 9 \cos \left(\frac{\pi}{2}t\right) \Rightarrow dx = -\frac{7 \pi}{2} \sin \left(\frac{\pi}{2}t\right)$[/tex]

[tex]$y(t) = 9 \sin \left(\frac{\pi}{2}t\right) \Rightarrow dy = -\frac{7 \pi}{2} \cos \left(\frac{\pi}{2}t\right)$[/tex]

Then :

[tex]$\int_{C_1} y^2 x dx + x^2 y dy$[/tex]

[tex]$=\int_0^1 \left[\left( 9 \sin \frac{\pi}{2}t\right)^2\left(9 \cos \frac{\pi}{2}t\right)\left(-\frac{7 \pi}{2} \sin \frac{\pi}{2}t dt\right) + \left( 9 \cos \frac{\pi}{2}t\right)^2\left(9 \sin \frac{\pi}{2}t\right)\left(\frac{7 \pi}{2} \cos \frac{\pi}{2}t dt\right) \right]$[/tex]

[tex]$=\left[-9^4\ \frac{\cos^4\left(\frac{\pi}{2}t\right)}{\frac{\pi}{2}} -9^4\ \frac{\sin^4\left(\frac{\pi}{2}t\right)}{\frac{\pi}{2}} \right]_0^1$[/tex]

= 0

And

x = 0,  ⇒ dx = 0

y = 9 t,  ⇒ dy = 9 dt

[tex]$\int_{C_3} y^2 x dx + x^2 y dy = \int_0^1 (0)(0)+(0)(0) = 0$[/tex]

Therefore,

[tex]$ \oint y^2xdx +x^2ydy = \int_{C_1} y^2 x dx + x^2 x dx+ \int_{C_2} y^2 x dx + x^2 x dx+ \int_{C_3} y^2 x dx + x^2 x dx $[/tex]

      ��                 = 0 + 0 + 0

Applying the Green's theorem

[tex]$x^2 +y^2 = 81 \Rightarrow x \pm \sqrt{81-y^2}$[/tex]

[tex]$\int_C P dx + Q dy = \int \int_R\left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy $[/tex]

Here,

[tex]$P(x,y) = y^2x \Rightarrow \frac{\partial P}{\partial y} = 2xy$[/tex]

[tex]$Q(x,y) = x^2y \Rightarrow \frac{\partial Q}{\partial x} = 2xy$[/tex]

[tex]$\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} \right) = 2xy - 2xy = 0$[/tex]

Therefore,

[tex]$\oint_Cy^2xdx+x^2ydy = \int_0^9 \int_0^{\sqrt{81-y^2}}0 \ dx dy$[/tex]

                            [tex]$= \int_0^9 0\ dy = 0$[/tex]

The vector field F is = [tex]$y^2 x \hat i+x^2 y \hat j$[/tex]  is conservative.

Ver imagen AbsorbingMan