Most stars are main-sequence stars, a group of stars for which size, mass, surface temperature, and radiated power are closely related. The sun, for instance, is a yellow main sequence star with a surface temperature of 5800 K. For a main-sequence star whose mass M is more than twice that of the sun, the total radiated power, relative to the sun, is approximately P/Psun = 1.5(M/Msun)3.5. The star Regulus A is a bluish main-sequence star with mass 3.8Msun and radius 3.1Rsun. What is the surface temperature of Regulus A?

Respuesta :

Answer:

the surface temperature of Regulus A is 11724.13 K

Explanation:

Given the data in the question;

Sun's surface temperature T = 5800 K

total radiated power, relative to the sun is; P/P[tex]_{sun[/tex] = [tex]([/tex] 1.5(M/M[tex]_{sun[/tex] [tex])^{3.5[/tex]

The star Regulus A is a bluish main-sequence star with mass 3.8M[tex]_{sun[/tex]  and radius 3.1R[tex]_{sun[/tex] .

First, we determine the value power emitted by the sun or sun as follows;

P = eσAT⁴

where P is the power, e is surface emissivity, σ is Stefan Boltzmann, A is area and T is temperature.

so, lets assume emissivity of star and sun is same;

let p be power related to star and p[tex]_{sun[/tex] be power related sun.

Ratio of power radiated by star and power radiated by sun;

P/P[tex]_{sun[/tex] = eσAT⁴ / eσA[tex]_{sun[/tex]T[tex]_{sun[/tex]⁴

we know that AREA A = πR²

we input the formula for area

P/P[tex]_{sun[/tex] = eσ(πR²)T⁴ / eσ(π(R[tex]_{sun[/tex])²)T[tex]_{sun[/tex]⁴

such that we now have;

P/P[tex]_{sun[/tex] = R²T⁴ / R[tex]_{sun[/tex]²T[tex]_{sun[/tex]⁴

given that P/P[tex]_{sun[/tex] = [tex]([/tex] 1.5(M/M[tex]_{sun[/tex] [tex])^{3.5[/tex], we substitute

[tex]([/tex] 1.5(M/M[tex]_{sun[/tex] [tex])^{3.5[/tex] = R²T⁴ / R[tex]_{sun[/tex]²T[tex]_{sun[/tex]⁴

we find temperature of the star T

T = 5800  × [tex][[/tex] 1.5[tex]([/tex]M/M[tex]_{sun[/tex][tex])^{3.5[/tex] (R[tex]_{sun[/tex]²/R²)[tex]]^{1/4[/tex]

Given that;  mass M is 3.8M[tex]_{sun[/tex] and radius R is 3.1R[tex]_{sun[/tex] .

we substitute

T = 5800  × [tex][[/tex] 1.5[tex]([/tex]3.8M[tex]_{sun[/tex]/M[tex]_{sun[/tex][tex])^{3.5[/tex] (R[tex]_{sun[/tex]²/( 3.1R[tex]_{sun[/tex] )²)[tex]]^{1/4[/tex]

T = 5800  × [tex][[/tex] 1.5[tex]([/tex]3.8[tex])^{3.5[/tex] ( 1/( 3.1)²)[tex]]^{1/4[/tex]

T = 5800  × [tex][[/tex] 1.5( 106.9652 ) ( 1/(9.61) [tex]]^{1/4[/tex]

T = 5800  × [tex][[/tex] 16.69592 [tex]]^{1/4[/tex]

T = 5800  ×  2.02140152

T = 11724.13 K

Therefore, the surface temperature of Regulus A is 11724.13 K