Respuesta :

here's the solution,

we know :

[tex] \sin( \theta) = \dfrac{perpendicular}{hypotenuse} [/tex]

So,

[tex] \dfrac{p}{h} = \dfrac{12}{13} [/tex]

so.. let the perpendicular be 12x and hypotenuse be 13x

now,

by applying pythagoras theorem,

  • [tex]b {}^{2} = h {}^{2} - p {}^{2} [/tex]

where,

  • b = base
  • h = hypotenuse
  • p = perpendicular

So,

  • [tex]b {}^{2} = ({13x})^{2} - ({12x})^{2} [/tex]
  • [tex] b {}^{2} = 169x {}^{2} - 144x {}^{2} [/tex]
  • [tex] {b}^{2} = 25x {}^{2} [/tex]
  • [tex]b = 5x[/tex]

so,

  • [tex] \cos( \theta) = \dfrac{b}{h} [/tex]

  • [tex] \cos( \theta) = \dfrac{5x}{13x} [/tex]

  • [tex] \cos( \theta) = \dfrac{5}{13} [/tex]

hope it helps !!