Respuesta :

Given:

A rectangle with sides 40 and 25.

A circle with radius 8 inside the rectangle.

The area of circle is unshaded.

To find:

The probability that a point (randomly selected) will lie in the unshaded region.

Solution:

The area of the rectangle is:

[tex]A_1=Length\times Width[/tex]

[tex]A_1=40\times 25[/tex]

[tex]A_1=1000[/tex]

The area of the circle is:

[tex]A_2=\pi r^2[/tex]

Where, r is the radius.

[tex]A_2=\pi (8)^2[/tex]

[tex]A_2=\pi (64)[/tex]

[tex]A_2=64\pi[/tex]

[tex]A_2\approx 201.06[/tex]

The probability that a point (randomly selected) will lie in the unshaded region is:

[tex]\text{Probability}=\dfrac{\text{Unshaded region}}{\text{Total region}}[/tex]

[tex]\text{Probability}=\dfrac{A_2}{A_1}[/tex]

[tex]\text{Probability}=\dfrac{201.06}{1000}[/tex]

[tex]\text{Probability}=0.20106[/tex]

Therefore, the required probability is 0.20106.