Answer:
The answer is [tex]12\log{(x(x-2))}[/tex]
Step-by-step explanation:
Exponential property of logarithm:
We have that:
[tex]a \log{x} = \log{x^{a}}[/tex]
Sum of logarithms:
We have that:
[tex]\log{a} + \log{b} = \log{ab}[/tex]
Applying the exponential property:
[tex]3\log{x} = \log{x^3}[/tex]
[tex]4\log{(x-2)} = \log{(x-2)^4}[/tex]
So
[tex]3\log{x} + 4\log{x-2} = \log{x^3} + \log{(x-2)^4}[/tex]
Additive property
[tex]\log{x^3} + \log{(x-2)^4} = \log{x^3(x-2)^4} = \log{(x(x-2))^12}[/tex]
Exponential property:
[tex]\log{(x(x-2))^12} = 12\log{(x(x-2))}[/tex]
The answer is [tex]12\log{(x(x-2))}[/tex]