Respuesta :

Answer:

The answer is [tex]12\log{(x(x-2))}[/tex]

Step-by-step explanation:

Exponential property of logarithm:

We have that:

[tex]a \log{x} = \log{x^{a}}[/tex]

Sum of logarithms:

We have that:

[tex]\log{a} + \log{b} = \log{ab}[/tex]

Applying the exponential property:

[tex]3\log{x} = \log{x^3}[/tex]

[tex]4\log{(x-2)} = \log{(x-2)^4}[/tex]

So

[tex]3\log{x} + 4\log{x-2} = \log{x^3} + \log{(x-2)^4}[/tex]

Additive property

[tex]\log{x^3} + \log{(x-2)^4} = \log{x^3(x-2)^4} = \log{(x(x-2))^12}[/tex]

Exponential property:

[tex]\log{(x(x-2))^12} = 12\log{(x(x-2))}[/tex]

The answer is [tex]12\log{(x(x-2))}[/tex]