Respuesta :

Answer: The new pressure is 280 kPa.

Explanation:

Given: [tex]V_{1}[/tex] = 400.0 mL,      [tex]T_{1} = 20^{o}C[/tex] ,       [tex]P_{1}[/tex] = 70.0 kPa

[tex]V_{2}[/tex] = 200.0 mL,        [tex]T_{2} = 40.0^{o}C[/tex],        [tex]P_{2}[/tex] = ?

Now, combined gas law is used to calculate the new pressure as follows.

[tex]\frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}}[/tex]

Substitute the values into above formula as follows.

[tex]\frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}}\\\frac{70.0 kPa \times 400.0 mL}{20^{o}C} = \frac{P_{2} \times 200.0 mL}{40.0^{o}C}\\P_{2} = 280 kPa[/tex]

Thus, we can conclude that the new pressure is 280 kPa.