Respuesta :

  • Direction: Opens up
  • Coordinates of the vertex:  (-1, -3)
  • Vertex: -3
  • The vertex is a minimum
  • Axis of symmetry: x = -1
  • Vertex form: [tex]y = (x + 1)^{2} -3[/tex]

Answer:

          vertex form:    y = (x + 1)² - 3

          the vertex is minimum

          coordinates of the vertex:  (-1, -3)

Step-by-step explanation:

[tex]y=x^2+2x-2\\\\y=x^2+2x+1-1-2\\\\\bold{y=(x+1)^2-3}[/tex]

a = 1 > 0  ← it means the parabla opens up, so, the vertex is minimum

The vertex form is  y = a(x - h)² + k, where (h, k) is the vertex

So, from  y = (x + 1)² - 3   the vertex is:  (-1, -3)