Respuesta :

Answer:

[tex]6+ \sqrt{29},6-\sqrt{29}[/tex]

Step-by-step explanation:

The given quadratic equation is [tex]x^2-12x+7=0[/tex]

The general form of quadratic equation is given by :

[tex]ax^2+bx+c=0[/tex]

Comparing both the equations,

a = 1, b = -12 and c = 1

The solution of a quadratic equation is given by :

[tex]x=\dfrac{-b\pm \sqrt{b^2-4ac} }{2a}[/tex]

Put all the values,

[tex]a=\dfrac{-(-12)\pm \sqrt{(-12)^2-4\times 1\times 7} }{2(1)}\\\\=\dfrac{12\pm \sqrt{116}}{2}\\\\=\dfrac{12\pm 2\sqrt{29}}{2}\\\\=6\pm \sqrt{29}[/tex]

So, the solutions of the given equation is [tex]6+ \sqrt{29},6-\sqrt{29}[/tex]. Hence, the correct option is (d).