Respuesta :

Answer:

Step-by-step explanation:

Observe that [tex]y^6-64=y^6-2^6.[/tex]

And you factor out using this expression:

[tex](a^6-b^6)=(a-b)(a^5+a^4b+a^3b^2+a^2b^3+ab^4+b^5)[/tex]

Take a=y and b=2.

Answer:

(y - 2)(y + 2)([tex]y^{4}[/tex] + 4y + 16)

Step-by-step explanation:

[tex]y^{6}[/tex] - 64 ← is a difference of cubes and factors in general as

a³ - b³ = (a - b)(a² + ab + b²) , then

[tex]y^{6}[/tex] - 64

= (y² )³ - 4³

= (y² - 4)([tex]y^{4}[/tex] + 4y + 16) ← note y² - 4 is a difference of squares

= (y - 2)(y + 2)([tex]y^{4}[/tex] + 4y + 16)