Respuesta :
Answer:
Step-by-step explanation:
Observe that [tex]y^6-64=y^6-2^6.[/tex]
And you factor out using this expression:
[tex](a^6-b^6)=(a-b)(a^5+a^4b+a^3b^2+a^2b^3+ab^4+b^5)[/tex]
Take a=y and b=2.
Answer:
(y - 2)(y + 2)([tex]y^{4}[/tex] + 4y + 16)
Step-by-step explanation:
[tex]y^{6}[/tex] - 64 ← is a difference of cubes and factors in general as
a³ - b³ = (a - b)(a² + ab + b²) , then
[tex]y^{6}[/tex] - 64
= (y² )³ - 4³
= (y² - 4)([tex]y^{4}[/tex] + 4y + 16) ← note y² - 4 is a difference of squares
= (y - 2)(y + 2)([tex]y^{4}[/tex] + 4y + 16)