Answer: [tex]V=x^3-2x^2+13x-12[/tex]
Step-by-step explanation:
Given
The area of the base is given by [tex]b(x)=x^2-x+12[/tex]
The height of the container is [tex]h(x)=x-1[/tex]
The volume of the cylindrical container is
[tex]V=Area\times height[/tex]
Insert the values
[tex]\Rightarrow V=\left( x^2-x+12\right)\cdot \left(x-1\right)\\\Rightarrow V=x^3-x^2+12x-x^2+x-12\\\Rightarrow V=x^3-2x^2+13x-12[/tex]