Answer:
The right solution is "1559".
Step-by-step explanation:
The given values are:
Variance,
[tex]\sigma=\sqrt{5.76}[/tex]
[tex]=2.40[/tex]
Maximum error,
[tex]M.E=0.1[/tex]
At 90% confidence level,
[tex]\alpha=0.1[/tex]
According to the z-table, the critical value will be:
[tex]Zc=1.645[/tex]
Now,
The sample size will be:
⇒ [tex]n=(Zc\times \frac{\sigma}{E} )^2[/tex]
On substituting the values, we get
⇒ [tex]=(1.645\times \frac{2.4}{0.1} )^2[/tex]
⇒ [tex]=(1.645\times 24)^2[/tex]
⇒ [tex]=(39.48)^2[/tex]
⇒ [tex]=1558.67[/tex]
or,
⇒ [tex]=1559[/tex]