Respuesta :
Answer:
(a) The expected value is: $0.40625
(b) The expected value is: $0.4286
Step-by-step explanation:
Solving (a): Raffle 1
Given
[tex]Tickets=800[/tex]
[tex]Value = \$2[/tex] per ticket
[tex]Grand\ Prize = \$450[/tex] ---- for 1
[tex]Consolation = \$100[/tex] --- for 2
Required
The expected value of each ticket
First, calculate the total amount of the 800 tickets
[tex]Amount = Tickets * Value[/tex]
[tex]A_1 = 800 * \$2[/tex]
[tex]A_1 = \$1600[/tex]
Next, calculate the total amount of the prizes
[tex]Amount = Tickets * Value[/tex]
[tex]A_2 = \$450 * 1 +\$100 * 2[/tex]
[tex]A_2 = \$450 +\$200[/tex]
[tex]A_2 = \$650[/tex]
The expected value E(x) of 1 ticket is calculated as:
[tex]E(x) = \frac{A_2}{A_1}[/tex]
[tex]E(x) = \frac{\$650}{\$1600}[/tex]
[tex]E(x) = \$0.40625[/tex]
Solving (b): Raffle 2
Given
[tex]Tickets=350[/tex]
[tex]Value = \$2[/tex] per ticket
[tex]Grand\ Prize = \$150[/tex] ---- for 1
[tex]Consolation = \$50[/tex] --- for 3
Required
The expected value of each ticket
First, calculate the total amount of the 800 tickets
[tex]Amount = Tickets * Value[/tex]
[tex]A_1 = 350 * \$2[/tex]
[tex]A_1 = \$700[/tex]
Next, calculate the total amount of the prizes
[tex]Amount = Tickets * Value[/tex]
[tex]A_2 = \$150 * 1 +\$50 * 3[/tex]
[tex]A_2 = \$150 +\$150[/tex]
[tex]A_2 = \$300[/tex]
The expected value E(x) of 1 ticket is calculated as:
[tex]E(x) = \frac{A_2}{A_1}[/tex]
[tex]E(x) = \frac{\$300}{\$700}[/tex]
[tex]E(x) = \$0.4286[/tex]