Respuesta :

Answer:

11

Step-by-step explanation:

[tex] \mathcal{SOLUTION}\begin{cases} \rm \mapsto \: \dfrac{3}{4} (x + 1) + 1 = \dfrac{1}{2} (x - 2) + 5 \\ \rm \mapsto \: \dfrac{3(x + 1)}{4} + 1 = \dfrac{1(x - 2)}{2} + 5 \\ \rm \mapsto \: \dfrac{3x + 1}{4} + 1 = \dfrac{x - 2}{2} + 5 \\ \rm \mapsto \: \dfrac{3x + 1}{4} - \dfrac{x - 2}{2} = 5 - 1 \\ \rm \mapsto \: \dfrac{3x + 1 -(2 x - 4)}{4} = 4 \\ \rm \mapsto \: \dfrac{3x + 1 - 2x + 4}{4} = 4 \\ \rm \mapsto \: x + 5 = 16 \\ \rm \mapsto \: x = 16 - 5 \\ \rm \mapsto \: x = 11\end{cases}[/tex]