A stockbroker knows from past experience that the probability that a client owns stocks is 0.60 and the probability that a client owns bonds is 0.50. The probability that a client owns stocks if he/she already owns bonds is 0.06. Given that a client owns stock, Calculate the probability (as a decimal) that he/she owns bonds?

Respuesta :

Answer:

"0.07" is the appropriate answer.

Step-by-step explanation:

The given values are:

P(Stock),

= 0.60

P(Bond),

= 0.50

P(Bond | Stock),

= 0.06

Now,

The P(Stock | Bond) will be:

⇒  [tex]P(Stock|Bond)= \frac{P(Stock \ and \ Bond)}{P(Bond)}[/tex]

or,

⇒  [tex]P(Stock|Bond)=\frac{P(Bond|Stock).P(Stock)}{P(Bond)}[/tex]

On substituting the given values, we get

⇒                           [tex]=\frac{0.06\times 0.60}{0.50}[/tex]

⇒                           [tex]=\frac{0.036}{0.50}[/tex]

⇒                           [tex]=0.07[/tex]