Answer:
[tex]x = 15[/tex]
[tex]y = 25[/tex]
Step-by-step explanation:
Given
See attachment for MNPQ and RSTU
Required
Find x and y
To solve this question, we make use of equivalent ratios of corresponding side lengths.
The ratio of corresponding sides are:
[tex]MN : RS[/tex]
[tex]NP : ST[/tex]
[tex]PQ : TU[/tex]
[tex]MQ : RU[/tex]
From the attachment, we have:
[tex]MN : RS \to 18 : 30[/tex]
[tex]NP : ST \to x : 25[/tex]
[tex]PQ : TU \to 15 : y[/tex]
To solve for x, we equate [tex]MN : RS[/tex] and [tex]NP : ST[/tex]
[tex]18 : 30 = x : 25[/tex]
Express as fraction
[tex]\frac{18 }{ 30 }= \frac{x }{ 25}[/tex]
Make x the subject
[tex]x = 25 * \frac{18 }{ 30 }[/tex]
[tex]x = \frac{25 * 18 }{ 30 }[/tex]
[tex]x = \frac{450}{ 30 }[/tex]
[tex]x = 15[/tex]
To solve for y, we equate [tex]MN : RS[/tex] and [tex]PQ : TU[/tex]
[tex]18 : 30 = 15 : y[/tex]
Express as fraction
[tex]\frac{18 }{ 30 }= \frac{15 }{ y}[/tex]
Make y the subject
[tex]y = 15 * \frac{30 }{ 18 }[/tex]
[tex]y = \frac{15 *30}{ 18 }[/tex]
[tex]y = \frac{450}{ 18 }[/tex]
[tex]y = 25[/tex]