If sin ⁡ A = 28 53 sinA= 53 28 ​ and cos ⁡ B = 3 5 cosB= 5 3 ​ and angles A and B are in Quadrant I, find the value of tan ⁡ ( A + B ) tan(A+B).

Respuesta :

Answer:

[tex]Tan(A+B)=\frac{264}{23}[/tex]

Step-by-step explanation:

From the question we are told that:

 [tex]SinA=\frac{28}{53}[/tex]

 [tex]CosB=\frac{3}{5}[/tex]

Let X be the adjective side to A

Let Y be the opposite side to B

Generally the equation for X is mathematically given by

 [tex]X^2=\sqrt{53^2-28^2}[/tex]

 [tex]X=45[/tex]

Therefore [tex]TanA[/tex]

[tex]TanA=\frac{28}{45}[/tex]

Generally the equation for Y is mathematically given by

 [tex]Y^2=\sqrt{5^2-3^2}[/tex]

 [tex]Y=4[/tex]

Therefore [tex]TanB[/tex]

[tex]TanB=\frac{4}{3}[/tex]

Generally the equation for [tex]Tan(A+B)[/tex] is mathematically given by

[tex]Tan(A+B)=\frac{TanA+TanB}{1-TanA*TanB}[/tex]

[tex]Tan(A+B)=\frac{\frac{28}{45}+(\frac{4}{3})}{1-(\frac{28}{45})*(\frac{4}{3})}[/tex]

[tex]Tan(A+B)=\frac{264}{23}[/tex]