a12247
contestada

A sphere of radius 2x m has an area of ​​152.4 m2 and a volume of 360.9 m3. How much will the area and volume of another sphere of radius r = 3x measure?

I will do anything if you tell me this

Respuesta :

Answer:

[tex]V = 1218.0375m^{3}[/tex]

[tex]A = 342.9m^{2}[/tex]

Step-by-step explanation:

Area:

[tex]A =[/tex] π [tex]r^{2}[/tex]

[tex]152.4 =[/tex] π [tex](2x)^{2}[/tex]       *Square 2x*

[tex]152.4 =[/tex] π [tex]4x^{2}[/tex]          *Divide by π*

[tex]48.510 = 4x^{2}[/tex]           *Divide by 4*

[tex]12.128 = x^{2}[/tex]             *Square root*

[tex]\sqrt{12.128} = x[/tex]           *Solve*

x ≈ 3.482

Now take the same equation but replace 2x with 3x

[tex]A =[/tex] π [tex]r^{2}\\[/tex]

Now replace x with 3.482 and solve for area.

[tex]A = 342.9m^{2\\}[/tex]

Volume:

[tex]V = \frac{4}{3}[/tex] π [tex]r^{3}[/tex]               *Insert variables*

[tex]360.9 = \frac{4}{3}[/tex] π [tex](2x)^{3}[/tex]     *Cube 2x*

[tex]360.9 = \frac{4}{3}[/tex] π [tex](8x^{3})[/tex]     *Multiply [tex]\frac{3}{4}[/tex] on both sides*

[tex]270.675 =[/tex] π [tex](8x^{3})[/tex]    *Divide by π*

[tex]86.159 = 8x^{3}[/tex]           *Divide by 8*

[tex]10.770 = x^{3}[/tex]             *Cube root*

[tex]\sqrt[3]{10.770} = x[/tex]            *Solve*

x ≈ 2.208

Now take the same equation but replace 2x with 3x

[tex]V = \frac{4}{3}[/tex] π [tex](3x)^{3}[/tex]    

Now replace x with 2.208 and solve for volume.

[tex]V = 1218.0375m^{3}[/tex]