Answer:
9[tex]\sqrt{3}[/tex] cm² or approximately 15.59 cm²
Step-by-step explanation:
Use the formula for the area of an equilateral triangle, A = [tex]\frac{\sqrt{3} }{4}[/tex]a²
Plug in the side length, 6 cm, as a in the formula:
A = [tex]\frac{\sqrt{3} }{4}[/tex](6²)
A = [tex]\frac{\sqrt{3} }{4}[/tex](36)
A = 9[tex]\sqrt{3}[/tex]
So, the area of the logo is 9[tex]\sqrt{3}[/tex] cm² or approximately 15.59 cm²