Respuesta :

Answer:

9[tex]\sqrt{3}[/tex] cm² or approximately 15.59 cm²

Step-by-step explanation:

Use the formula for the area of an equilateral triangle, A = [tex]\frac{\sqrt{3} }{4}[/tex]

Plug in the side length, 6 cm, as a in the formula:

A = [tex]\frac{\sqrt{3} }{4}[/tex](6²)

A = [tex]\frac{\sqrt{3} }{4}[/tex](36)

A = 9[tex]\sqrt{3}[/tex]

So, the area of the logo is 9[tex]\sqrt{3}[/tex] cm² or approximately 15.59 cm²

Otras preguntas