Answer:
[tex]A=-3[/tex]
[tex]C=6[/tex]
[tex]B=4[/tex]
[tex]D=9[/tex]
Step-by-step explanation:
From the question we are told that:
Center of hyperbola at ( 6 , 9 )
Focus of hyperbola at ( 11 , 9 )
Vertex of hyperbola at ( 9 , 9)
Equation of hyperbola [tex]\frac{(x-C)^2}{A^2} -\frac{(y-D)^2}{B^2}=1[/tex]
Generally the C and D of the hyperbola equation is mathematically given by
[tex]Centers (6,9)[/tex]
[tex]C=6[/tex]
[tex]D=9[/tex]
Generally the A and B a of the hyperbola equation is mathematically given by
[tex]A=x_c-x_v[/tex]
[tex]A=6-9[/tex]
[tex]A=-3[/tex]
[tex]C'=x_c-x_f[/tex]
[tex]C'=6-11[/tex]
[tex]C'=-5[/tex]
Therefore with Center,Focus ,Vertex on the same line
[tex]B^2=C'^2-A^2[/tex]
[tex]B^2=(-5^2)-(-3^2)^2[/tex]
[tex]B^2=(25)-(9)[/tex]
[tex]B^2=16[/tex]
[tex]B=4[/tex]