HELP ASAP WILL MARK BRAINLIEST AREA OF FIGURES





Answer:
1. 170.083 in³
2. 126π in³
3. 92.106 m³
4. 2412.74 in³
5. 612π m³ and 1922 m³
Step-by-step explanation:
1.
Cylinder:
[tex]V = \pi r^{2}h[/tex] *Plug in numbers*
[tex](3.14)(2.5)^{2}(7)[/tex] *Square 2.5*
[tex](3.14)(6.25)(7)[/tex] *Solve*
≈ [tex]137.375in^{3}[/tex]
Sphere:
[tex]V = \frac{4}{3}\pi r^{3}[/tex] *Plug in numbers*
[tex]\frac{4}{3} (3.14)(2.5)^{3}[/tex] *Cube 2.5*
[tex]\frac{\frac{4}{3}(3.14)(15.625)}{2}[/tex] *Divide by 2 and Solve*
≈ [tex]32.7083 in^{3}[/tex]
Add both volumes
[tex]137.375 + 32.7083[/tex] ≈ [tex]170.083in^{3}[/tex]
2.
Cylinder:
[tex]V = \pi r^{2}h[/tex] *Plug in numbers*
[tex]\pi (3)^{2}(10)[/tex] *Square 3*
[tex]\pi (9)(10)[/tex] *Multiply*
[tex]90\pi[/tex]
Sphere:
[tex]V = \frac{4}{3}[/tex] π [tex]r^{3}[/tex] *Plug in numbers*
[tex]\frac{4}{3}\pi (3)^{3}[/tex] *Cube 3*
[tex]\frac{4}{3} \pi (27)[/tex] *Multiply*
[tex]36\pi[/tex]
Add both Volumes to get total
[tex]90\pi + 36\pi = 126in^{3}[/tex]
3.
Sphere:
[tex]V = \frac{4}{3}\pi r^{3}[/tex] *Plug in numbers*
[tex]\frac{4}{3} (3.14)(3)^{3}[/tex] *Cube 3*
[tex]\frac{4}{3} (3.14)(27)[/tex] *Multiply*
[tex]113.04m^{3}[/tex]
Cone:
[tex]V = \frac{\pi r^{2}h}{3}[/tex] *Plug in numbers*
[tex]\frac{(3.14)(2)^{2}(5)}{3}[/tex] *Square 2*
[tex]\frac{(3.14)(4)(5)}{3}[/tex] *Solve*
[tex]20.93m^{3}[/tex]
Subtract the volumes to get the volume of the blue area
[tex]113.04 - 20.93 = 92.106m^{3}[/tex]
4.
Sphere:
[tex]V = \frac{4}{3} \pi r^{3}[/tex] *Plug in numbers*
[tex]\frac{4}{3}\pi (8)^{3}[/tex] *Cube 8*
[tex]\\\frac{4}{3}\pi (512)[/tex] *Multiply*
[tex]\\\\\pi (682.6)[/tex] *Solve*
[tex]2133.66in^{3}[/tex] *Divide by 2 since it's a hemisphere*
Cone:
[tex]V = \frac{\pi r^{2}h}{3}[/tex] *Plug in numbers*
[tex]\frac{\pi (8)^{2}(20)}{3}[/tex] *Square 8*
[tex]\frac{\pi (64)(20)}{3}[/tex] *Multiply and Divide*
[tex]1340.41 in^{3}[/tex]
Add both volumes
[tex]1072.33 + 1340.41 = 2412.74in^{3}[/tex]
5.
Cylinder:
[tex]V = \pi r^{2}h[/tex] *Plug in numbers*
[tex]\pi (6)^{2}(16)[/tex] *Square 6*
[tex]\pi (36)(16)[/tex] *Multiply*
[tex]576\pi[/tex]
Cone:
[tex]V = \frac{\pi r^{2}h}{3}[/tex] *Plug in numbers*
[tex]\frac{\pi (6)^{2}3}{3}[/tex] *Square 6*
[tex]36\pi[/tex]
Add both volumes
[tex]576\pi + 36\pi = 612\pi m^{3}[/tex]
Alternative: *Multiply π*
[tex]1922m^{3}[/tex]
Answer:
1) 175 [tex]in^2[/tex]
2) 1st option
3) 92 [tex]m^2[/tex]
4) 2412 [tex]in^3\\[/tex]
5) 2nd option
Step-by-step explanation:
[tex]1)\ A = D * Pi = 5 * 3.14 = 15.7\\[/tex]
[tex]2)\ V_{1} = 15.7 * 7 = 109.9[/tex]
[tex]3)\ V_{2} = 4Pi*\frac{R^3}{3} = 12.56*\frac{15.625}{3} = 65.41(6)[/tex]
[tex]4)\ V_1 + V_2 = 65.4 + 109.9 = 175.3[/tex] which is close to 175
[tex]1)\ A = Pi * R^2 = 3.14 * (\frac{6}{2})^2 = 3.14 * 3^2 = 28.26\\[/tex]
[tex]2)\ V_1 = A * h = 28.26 * 10 = 282.6[/tex]
[tex]3)\ V_2 = \frac{4}{3} * Pi * R^3 = \frac{4}{3} * 3.14 * (\frac{6}{2})^3 = 113.04[/tex]
[tex]4)\ V_1 + V_2 = 282.6 + 113 = 395.6[/tex] which is very close to 396
[tex]5)\ 396 = 126 * pi[/tex]
[tex]1) V_1 = \frac{1}{3} * Pi * R^2 * h = \frac{1}{3} * 3.14 * 2^2 * 5 = 20.9(3)[/tex] =
[tex]2)\ V_2 = \frac{4}{3} * Pi * R^3 = \frac{4}{3} * 3.14 * 3^3 = 113.04\\[/tex]
[tex]3)\ V_2 - V_1 = 113.04 - 20.93 = 92.14[/tex] which is very close to 92
[tex]1)\ V_1 = \frac{\frac{4}{3} * Pi * R^3}{2} = \frac{\frac{4}{3} * 3.14 * 512}{2} = 1,071.786\\[/tex]
[tex]2)\ V_2 = \frac{1}{3} * Pi * R^2 * h = \frac{1}{3} * 3.14 * 64 * 20 = 1,339.733[/tex]
[tex]3)\ V_1 + V_2 = 1072 + 1340 = 2,411 = 2412[/tex]
[tex]1)\ A = Pi * R^2 = 36*Pi\\[/tex]
[tex]2)\ V_1 = 36*Pi * 16 = 576 * Pi\\[/tex]
[tex]3)\ V_2 = \frac{1}{3} * Pi * R^2 * h = \frac{1}{3} * Pi * 36 * 3 = 36 * Pi[/tex]
[tex]4) V_1 + V_2 = 576Pi + 36Pi = 612Pi[/tex]