Find the measure of the indicated angle. Need help please.
I need explanation

Answer:
BC =21.03540021
Step-by-step explanation:
We know the measure of angle B since the sum of the angles of a triangle add to 180
A + B+ C = 180
61+ B + 12 =180
B = 180 - 12 -61
B =107
Then we can use the law of sines to find BC
sin B sin A
-------- = -------------
AC BC
sin 107 sin 61
-------- = -------------
23 BC
Using cross products
BC sin 107 = 23 sin 61
BC = 23 sin 61/ sin 107
BC =21.03540021
Answer:
20.12m
Step-by-step explanation:
180 - (12 + 61) = 107° = ∡B
[tex]\frac{23}{sin(107)} = \frac{a}{sin(61)}[/tex] *Cross Multiply*
[tex]a(sin(107)) = 23(sin(61))[/tex] *Divide by sin(107)*
[tex]a = \frac{23(sin(61))}{sin(107)}[/tex] *Solve*
a = BC ≈ 20.12m