Respuesta :

Answer:

[tex]AB + A = 16[/tex]

Step-by-step explanation:

Given

[tex]12y^2 - 65y + 42 = (Ay -14)(By - 3)[/tex]

Required

Find [tex]AB + A[/tex]

[tex]12y^2 - 65y + 42 = (Ay -14)(By - 3)[/tex]

Expand

[tex]12y^2 -56y -9y + 42 = (Ay - 14)(By -3)[/tex]

Factorize

[tex]4y(3y -14) -3(3y - 14) = (Ay - 14)(By -3)[/tex]

Factor out 3y- 14

[tex](3y - 14)(4y -3) = (Ay - 14)(By -3)[/tex]

By comparison:

[tex]Ay - 14 = 3y - 14[/tex]

and

[tex]By - 3 = 4y - 3[/tex]

So, we have:

[tex]Ay - 14 = 3y - 14[/tex]

Add 14 to both sides

[tex]Ay = 3y[/tex]

Divide both sides by y

[tex]A = 3[/tex]

[tex]By - 3 = 4y - 3[/tex]

Add 3 to both sides

[tex]By = 4y[/tex]

Divide both sides by y

[tex]B = 4[/tex]

So, the expression [tex]AB + A[/tex] is:

[tex]AB + A = 3 * 4 + 4[/tex]

[tex]AB + A = 12 + 4[/tex]

[tex]AB + A = 16[/tex]