Respuesta :

Given:

The given quadratic polynomial is :

[tex]x^2-x-12[/tex]

To find:

The quadratic polynomial whose zeroes are negatives of the zeroes of the given polynomial.

Solution:

We have,

[tex]x^2-x-12[/tex]

Equate the polynomial with 0 to find the zeroes.

[tex]x^2-x-12=0[/tex]

Splitting the middle term, we get

[tex]x^2-4x+3x-12=0[/tex]

[tex]x(x-4)+3(x-4)=0[/tex]

[tex](x+3)(x-4)=0[/tex]

[tex]x=-3,4[/tex]

The zeroes of the given polynomial are -3 and 4.

The zeroes of a quadratic polynomial are negatives of the zeroes of the given polynomial. So, the zeroes of the required polynomial are 3 and -4.

A quadratic polynomial is defined as:

[tex]x^2-(\text{Sum of zeroes})x+\text{Product of zeroes}[/tex]

[tex]x^2-(3+(-4))x+(3)(-4)[/tex]

[tex]x^2-(-1)x+(-12)[/tex]

[tex]x^2+x-12[/tex]

Therefore, the required polynomial is [tex]x^2+x-12[/tex].