The polynomials ax³ -3 x² +4 and 2x³ -5x+a, when divided by (x-2), leave the remainders p and q are respectively. If p -2 q=4, find the value of a.​

Respuesta :

Given:

The polynomial are:

[tex]ax^3-3x^2+4[/tex]

[tex]2x^3-5x+a[/tex]

If the above polynomial divided by (x-2) then they leave remainder p and q respectively.

[tex]p-2q=4[/tex]

To find:

The value of a.

Solution:

According to the remainder theorem, if a polynomial f(x) is divided by (x-c), then the remainder is f(c).

If the polynomial [tex]ax^3-3x^2+4[/tex] is divided by (x-2), then the remainder is p. So.

[tex]a(2)^3-3(2)^2+4=p[/tex]

[tex]8a-12+4=p[/tex]

[tex]8a-8=p[/tex]

If the polynomial [tex]2x^3-5x+a[/tex] is divided by (x-2), then the remainder is q. So.

[tex]2(2)^3-5(2)+a=q[/tex]

[tex]16-10+a=q[/tex]

[tex]6+a=q[/tex]

It is given that,

[tex]p-2q=4[/tex]

[tex](8a-8)-2(6+a)=4[/tex]

[tex]8a-8-12-2a=4[/tex]

[tex]6a-20=4[/tex]

Add 20 on both sides.

[tex]6a=4+20[/tex]

[tex]6a=24[/tex]

[tex]a=\dfrac{24}{6}[/tex]

[tex]a=4[/tex]

Therefore, the value of a is 4.