Answer:
112.5 watts
Explanation:
The output voltage (V) = 15 volts
The equivalent resistance for the speakers connected in parallel ([tex]R_T[/tex]) is gotten by using the formula:
[tex]\frac{1}{R_T}=\frac{1}{R_1}+\frac{1}{R_2}+\frac{1}{R_3}+\frac{1}{R_4}\\\\But\ R_1=R_2=R_3=R_4=8\ ohm\\\\\frac{1}{R_T} =\frac{1}{8} +\frac{1}{8} +\frac{1}{8} +\frac{1}{8} \\\\\frac{1}{R_T} =\frac{1+1+1+1}{8} \\\\\frac{1}{R_T} =\frac{4}{8} \\\\R_T=\frac{8}{4} \\\\R_T=2\ ohm[/tex]
The current flowing through the amplifier (I) is:
I = V / [tex]R_T[/tex] = 15 / 2 = 7.5 A
The audio power (P) when outputting this maximum voltage is given by:
P = V² / [tex]R_T[/tex] = I²[tex]R_T[/tex]. Therefore:
P = V² / [tex]R_T[/tex] = 15² / [tex]R_T[/tex] = 112.5 watts