Answer:
[tex]A_s=2.28yd^2[/tex]
Step-by-step explanation:
From the question we are told that:
Radius [tex]r=2yd[/tex]
Pie [tex]\pi=3.14[/tex]
Generally the equation for Area of the shaded part [tex](A_s)[/tex] is mathematically given by
[tex]A_s=Area\ of\ semi-circle(A_c)-Area\ of\ triangle(A_t)[/tex]
Generally the equation for Area of semi-circle is mathematically given by
[tex]A_c=\frac{1}{2}\pi r^2[/tex]
[tex]A_c=\frac{1}{2}*(3.14) (2)^2[/tex]
[tex]A_c=6.28yd^2[/tex]
Generally the equation for Area of triangle is mathematically given by
[tex]A_t=\frac{1}{2} base*height[/tex]
[tex]A_t=\frac{1}{2} (2+2)*2[/tex]
[tex]A_t=4yd^2[/tex]
Therefore Area of the shaded part [tex](A_s)[/tex]
[tex]A_s=A_c-A_t[/tex]
[tex]A_s=6.28yd^2-4yd^2[/tex]
[tex]A_s=2.28yd^2[/tex]