PLEASE HELP!! I will give brainliest!!

Drag the key features to the correct location on the image.

Each key feature can be used more than once, but not all key features will be used.
Which key features are present in these three functions?

PLEASE HELP I will give brainliest Drag the key features to the correct location on the image Each key feature can be used more than once but not all key featur class=

Respuesta :

Answer:

See screenshot attached that shows it is correct

Step-by-step explanation:

f(x) has a domain of (-infinity, 6) U (6, infinity). Horizontal asymptote of y= -2

g(x) has a domain of (-infinity, -3) U (-3,2) U (2,infinity). Horizontal asymptote of y=1.

h(x) has a domain of (-infinity, 6) U (6, infinity). Function has a oblique asymptote.

Ver imagen jessx3xoxoowa2j1
aksnkj

The function [tex]f(x)=\dfrac{\left(-2x+4\right)}{x-6}[/tex] will have a domain of [tex](-\infty,6)\cup(6,+\infty)[/tex], the function [tex]g(x)=\dfrac{\left(x^{2}-2x\right)}{x^{2}+x-6}[/tex] will have a domain of [tex](-\infty,-3)\cup(-3,2)\cup(2,+\infty)[/tex], and the function [tex]h(x)=\dfrac{\left(x^{2}-2x\right)}{x-6}[/tex] will have a domain of [tex](-\infty,6)\cup(6,+\infty)[/tex].

Given information:

The given functions are:

[tex]f(x)=\dfrac{\left(-2x+4\right)}{x-6}[/tex]

[tex]g(x)=\dfrac{\left(x^{2}-2x\right)}{x^{2}+x-6}[/tex]

[tex]h(x)=\dfrac{\left(x^{2}-2x\right)}{x-6}[/tex]

For a rational function, the denominator should not be equal to zero.

So, the domain of the first function will be,

[tex]x-6\neq0\\x\neq6\\(-\infty,6)\cup(6,+\infty)[/tex]

The function [tex]f(x)=\dfrac{\left(-2x+4\right)}{x-6}[/tex] will form a vertical asymptote at [tex]x=6[/tex].

The domain of the second function will be,

[tex]x^2+x-6\neq0\\x^2+3x-2x-6\neq0\\(x+3)(x-2)\neq0\\x\neq2, -3\\(-\infty,-3)\cup(-3,2)\cup(2,+\infty)[/tex]

The function [tex]g(x)=\dfrac{\left(x^{2}-2x\right)}{x^{2}+x-6}[/tex] will form a vertical asymptote at [tex]x=-3[/tex] and a horizontal asymptote at [tex]y=1[/tex].

The domain of third function h(x) will be,

[tex]x-6\neq0\\x\neq6\\(-\infty,6)\cup(6,+\infty)[/tex]

Now, the third function [tex]h(x)=\dfrac{\left(x^{2}-2x\right)}{x-6}[/tex] will form an oblique asymptote, and a vertical asymptote at [tex]x=6[/tex].

The graph of each function is attached to the image.

Therefore, the function [tex]f(x)=\dfrac{\left(-2x+4\right)}{x-6}[/tex] will have a domain of [tex](-\infty,6)\cup(6,+\infty)[/tex], the function [tex]g(x)=\dfrac{\left(x^{2}-2x\right)}{x^{2}+x-6}[/tex] will have a domain of [tex](-\infty,-3)\cup(-3,2)\cup(2,+\infty)[/tex], and the function [tex]h(x)=\dfrac{\left(x^{2}-2x\right)}{x-6}[/tex] will have a domain of [tex](-\infty,6)\cup(6,+\infty)[/tex].

For more details, refer to the link:

https://brainly.com/question/15099991

Ver imagen aksnkj