Respuesta :

Answer:

Area of trapezoid = 67.6 square units

Step-by-step explanation:

Area of a trapezoid is given by the expression,

Area of the trapezoid = [tex]\frac{1}{2}(b_1+b_2)h[/tex]

Here, [tex]b_1[/tex] and [tex]b_2[/tex] are the parallel sides of the given trapezoid.

And '[tex]h[/tex]' = Height between the parallel sides

From the given triangle ABE,

m(∠ABE) = m(∠ABC) - m(∠EBC)

m(∠ABE) = 120° - 90°

               = 30°

By applying cosine rule in the given triangle,

cos(30°) = [tex]\frac{\text{Adjacent side}}{\text{Hypotenuse}}[/tex]

[tex]\frac{\sqrt{3} }{2}=\frac{BE}{AB}[/tex]

[tex]\frac{\sqrt{3} }{2}=\frac{BE}{6}[/tex]

BE = [tex]3\sqrt{3}[/tex] units

By applying sine rule in ΔABE,

sin(30°) = [tex]\frac{\text{Opposite side}}{\text{Hypotenuse}}[/tex]

[tex]\frac{1}{2}=\frac{AE}{AB}[/tex]

[tex]\frac{1}{2}=\frac{AE}{6}[/tex]

AE = 3 units

Length of [tex]b_1=BC=10[/tex]

Length of [tex]b_2=AD=(AE+EF+FD)[/tex] [AE = FD, since given trapezoid ABCD is an isosceles trapezoid]

                [tex]b_2=3+10+3[/tex]

                [tex]b_2=16[/tex]

Height between the parallel sides [tex]h=3\sqrt{3}[/tex]

Area of the trapezoid = [tex]\frac{1}{2}(BC+AD)BE[/tex]

                                    = [tex]\frac{1}{2}(10+16)(3\sqrt{3})[/tex]

                                    = [tex]39\sqrt{3}[/tex]

                                    = 67.6 square units

Ver imagen eudora