Given:
The data set is 13, 14, 15, 6, 17, 16, 3.
To find:
The mean absolute deviation for the data set.
Solution:
We have,
13, 14, 15, 6, 17, 16, 3
Mean of the data set is:
[tex]\text{Mean}=\dfrac{\text{Sum of all observations}}{\text{Number of observations}}[/tex]
[tex]\overline{x}=\dfrac{13+14+15+6+17+16+3}{7}[/tex]
[tex]\overline{x}=\dfrac{84}{7}[/tex]
[tex]\overline{x}=12[/tex]
The formula for mean absolute deviation is:
[tex]MAD=\dfrac{\sum_{i=1}^n|x_i-\overline{x}|}{n}[/tex]
Using this formula, the mean absolute deviation for the data set is:
[tex]MAD=\dfrac{|13-12|+|14-12|+|15-12|+|6-12|+|17-12|+|16-12|+|3-12|}{7}[/tex]
[tex]MAD=\dfrac{1+2+3+6+5+4+9}{7}[/tex]
[tex]MAD=\dfrac{30}{7}[/tex]
[tex]MAD\approx 4.29[/tex]
Therefore, the mean absolute deviation for the data set is about 4.29.