Answer:
[tex]f(x) = 0.5(x+3)(x-1)[/tex]
Step-by-step explanation:
GIVEN :-
A quadratic function is represented by the graph in which :-
- Vertex of the parabola = (-1 , -2)
- The function intersects x-axis at (-3 , 0) and (1 , 0)
- Y-intercept of the function = -1.5
TO FIND :-
GENERAL CONCEPT USED IN THIS QUESTION :-
A quadratic function has 2 forms :-
- General form → f(x) = ax² + bx + c
- Standard form → f(x) = a(x - h)² + k [∵ where h = x-coordinate of the vertex of the function & k = y-coordinate of the vertex of the function.]
SOLUTION :-
The quadratic function in the graph intersects x-axis at two points (-3 , 0) & (1 , 0). But there are infinite parabolas which also intersect the same two points. And those parabolas have their unique quadratic function.
Method 1 (System of equations method) -
To find the unique quadratic function , you need to use three points on the
curve so that you can form 3 equations & solve them.
Using the General form of quadratic function , substitute the known values for x & y.
Let the three points be -
- (-3 , 0)
- (1 , 0)
- (0 , -1.5)
Substitute (-3 , 0) in general form of function -
[tex]0 = a(-3)^2 + b(-3) + c[/tex]
[tex]=> 9a-3b+c = 0[/tex] (eqn.1)
Substitute (1 , 0) in general form of function -
[tex]0 = a(1)^2 + b(1) + c[/tex]
[tex]=> a + b +c =0[/tex] (eqn.2)
Substitute (0 , -1.5) in general form of function -
[tex]-1.5 = a(0)^2 + b(0) + c[/tex]
[tex]=> c = -1.5[/tex]
Substitute c = -1.5 in -
1) eqn.1 → [tex]9a - 3b - 1.5 = 0[/tex]
[tex]=> 9a - 3b = 1.5[/tex]
[tex]=> 3(3a-b) = 1.5[/tex]
[tex]=> 3a-b = 0.5[/tex] (eqn.4)
2) eqn.2 → [tex]a+b-1.5=0[/tex]
[tex]=> a+b=1.5[/tex] (eqn.5)
Add eqn.4 & eqn.5 to get the value of 'a'.
[tex](3a-b)+(a+b) = 0.5+1.5[/tex]
[tex]=> 4a = 2[/tex]
[tex]=> a = \frac{2}{4} = \frac{1}{2} = 0.5[/tex]
Substitute a = 0.5 in eqn.5 -
[tex]0.5 + b = 1.5[/tex]
[tex]=> b = 1.5 - 0.5 = 1[/tex]
Now, rewrite the function in general form by putting the values of 'a' , 'b' & 'c'.
[tex]f(x) = (0.5)x^2 + (1)x - 1.5[/tex]
[tex]=> f(x) = 0.5(x^2 + 2x - 3)[/tex]
Factorise the quadratic polynomial.
[tex]=> f(x) = 0.5(x^2 + 3x - x - 3)[/tex]
[tex]=> f(x) = 0.5[x(x+3)-1(x+3)][/tex]
∴ [tex]f(x) = 0.5(x+3)(x-1)[/tex]
Method 2 (Vertex method) -
Another way to find the function is by taking any point on the curve & using the vertex of the parabola ; substitute the known values for x , y , h & k in the Standard form of the function.
Let that point on the curve be (-3 , 0)
Vertex = (-1 , -2)
Substitute the values of x , y , h & k in Standard form of function.
[tex]0 = a[-3 - (-1)]^2 + (-2)[/tex]
[tex]=> 0 = 4a-2[/tex]
[tex]=> 4a = 2[/tex]
[tex]=> a = \frac{2}{4} = 0.5[/tex]
Now rewrite the Standard form of the function by putting the values of h , k & a.
[tex]f(x) = 0.5(x+1)^2-2[/tex]
Expand it.
[tex]=> f(x) = 0.5(x^2+2x+1)-2[/tex]
[tex]=> f(x) = 0.5x^2+x+0.5-2[/tex]
[tex]=>f(x) = 0.5x^2 + x- 1.5[/tex]
[tex]=>f(x) = 0.5(x^2 + 2x - 3)[/tex]
Factorising it will give the final answer.
∴ [tex]f(x) = 0.5(x+3)(x-1)[/tex]