Respuesta :

Answer:

[tex]\displaystyle \frac{\cos^2(A)}{1+\sin(A)}=1-\sin(A)[/tex]

Step-by-step explanation:

We want to simplify:

[tex]\displaystyle \frac{\cos^2(A)}{1+\sin(A)}[/tex]

Recall the Pythagorean Identity:

[tex]\sin^2(A)+\cos^2(A)=1[/tex]

So:

[tex]\cos^2(A)=1-\sin^2(A)[/tex]

Substitute:

[tex]\displaystyle =\frac{1-\sin^2(A)}{1+\sin(A)}[/tex]

Factor. We can use the difference of two squares pattern:

[tex]\displaystyle =\frac{\left(1-\sin(A))(1+\sin(A))}{1+\sin(A)}[/tex]

Cancel. Hence:

[tex]\displaystyle \frac{\cos^2(A)}{1+\sin(A)}=1-\sin(A)[/tex]