Respuesta :

Answer:

[tex](a)\ \sqrt{20}=2\sqrt{5}[/tex]

[tex](b)\ \sqrt{300} = 10 \sqrt{3}[/tex]

[tex](c)\ \sqrt{128} = 8 \sqrt{2}[/tex]

Step-by-step explanation:

Required

Simplify

[tex](a)\ \sqrt{20}[/tex]

Express 20 as 4 * 5

[tex]\sqrt{20}=\sqrt{4 * 5}[/tex]

Split

[tex]\sqrt{20}=\sqrt{4} * \sqrt{5}[/tex]

This gives:

[tex]\sqrt{20}=2 * \sqrt{5}[/tex]

[tex]\sqrt{20}=2\sqrt{5}[/tex]

[tex](b)\ \sqrt{300[/tex]

Express as 100 * 3

[tex]\sqrt{300} = \sqrt{100} * \sqrt{3}[/tex]

This gives:

[tex]\sqrt{300} = 10 * \sqrt{3}[/tex]

[tex]\sqrt{300} = 10 \sqrt{3}[/tex]

[tex](c)\ \sqrt{128}[/tex]

Express as 64 * 2

[tex]\sqrt{128} = \sqrt{64*2}[/tex]

Split

[tex]\sqrt{128} = \sqrt{64} * \sqrt{2}[/tex]

[tex]\sqrt{128} = 8 * \sqrt{2}[/tex]

[tex]\sqrt{128} = 8 \sqrt{2}[/tex]

Questions 4 and 5 are not clear

Follow the steps in 1 - 3 to solve 4 and 5