Respuesta :

Answer:

Statement c:

a₁₁ + ( b₁₁+ c₁₁ ) = 0

Step-by-step explanation:

The options are:

a: a₁₁ = 0 and b₁₁ = 0

b: a₁₁ - ( b₁₁ + c₁₁ ) = 0

c. a₁₁ + ( b₁₁+ c₁₁ ) = 0

d. a₁₁x( b₁₁ + c₁₁) = 0

We know that A, B, and C are matrices of the same size, so we can write:

[tex]A = \left[\begin{array}{ccc}a_{11}&a_{21}&...\\a_{21}&a_{22}&...\\...&...&...\end{array}\right][/tex]

[tex]B = \left[\begin{array}{ccc}b_{11}&b_{21}&...\\b_{21}&b_{22}&...\\...&...&...\end{array}\right][/tex]

[tex]C = \left[\begin{array}{ccc}c_{11}&c_{21}&...\\c_{21}&c_{22}&...\\...&...&...\end{array}\right][/tex]

And here we have the sum of matrices, remember that:

[tex]A + B = \left[\begin{array}{ccc}a_{11}&a_{21}&...\\a_{21}&a_{22}&...\\...&...&...\end{array}\right] + \left[\begin{array}{ccc}b_{11}&b_{21}&...\\b_{21}&b_{22}&...\\...&...&...\end{array}\right] = \left[\begin{array}{ccc}a_{11} + b_{11}&a_{21} + b_{12}&...\\a_{21} + b_{21}&a_{22} + a_{22}&...\\...&...&...\end{array}\right][/tex]

And we know that (A + B) + C = 0 (a matrix full of zeros)

then:

[tex]\left[\begin{array}{ccc}(a_{11} + b_{11}) + c_{11} &(a_{21} + b_{12}) + c_{12}&...\\(a_{21} + b_{21}) + c_{21}&(a_{22} + b_{22}) + c_{22}&...\\...&...&...\end{array}\right] = \left[\begin{array}{ccc}0&0&...\\0&...&...\\...&...&...\end{array}\right][/tex]

Then:

(a₁₁ +  b₁₁ )+ c₁₁ = 0

These are real numbers, so we can rewrite this as:

a₁₁ + ( b₁₁+ c₁₁ )  = 0

Then statement c is the correct one.

Answer:

C

Step-by-step explanation:

unit test review edge 2021