Answer: (b)
Step-by-step explanation:
Given
[tex]\left | p\right |=\dfrac{2}{5}x+2[/tex]
[tex]\left | q\right |=\dfrac{-3}{4}x-1[/tex]
[tex]\left | p+q\right |=2x+4[/tex]
for two complex number, [tex]z_1,z_2[/tex]
[tex]\left | z_1+z_2\right |\leq \left | z_1\right |+\left | z_2\right |[/tex]
Apply the above the property
[tex]\Rightarrow 2x+4\leq \dfrac{2}{5}x+2-\dfrac{3}{4}x-1\\\\\Rightarrow 2x+4\leq \dfrac{8x-15x}{20}+1\\\\\Rightarrow 2x+3\leq -\dfrac{7x}{20}\\\Rightarrow x\leq -\dfrac{60}{47}[/tex]
Also, the absolute value of each complex number must be greater than or equal to zero
[tex]\text{Case-1}\\\\\Rightarrow \dfrac{2}{5}x+2\geq 0\\\\\Rightarrow x\geq -5\\\\\text{Case-2}\\\\\Rightarrow -\dfrac{3}{4}x-1\geq 0\\\\\Rightarrow x\leq -\dfrac{4}{3}\\\\\text{Case-3}\\\\\Rightarrow 2x+4\geq 0\\\Rightarrow x\geq -2[/tex]
Taking the intersection of the above values of x, we get
[tex]x\in [-2,-\dfrac{4}{3}][/tex]