Answer:
See attachment for plot
Step-by-step explanation:
Given
[tex]y =2x[/tex]
[tex]R =+2[/tex] --- increment in the rate
First, we need to model the new rate
A linear equation is:
[tex]y = mx + b[/tex]
Where
[tex]m = rate[/tex]
Compare [tex]y =2x[/tex] and [tex]y = mx + b[/tex]. we have:
[tex]m =2[/tex]
The above represents the previous rate.
The new rate:
[tex]R =+2[/tex]
Rewrite as:
[tex]R = m+2[/tex]
[tex]R = 2+2[/tex]
[tex]R = 4[/tex]
So, the model is:
[tex]y = Rx[/tex]
[tex]y = 4x[/tex]
The plot at 1 and 2 minutes
When [tex]x = 1[/tex]
[tex]y = 4x = 4 * 1 = 4[/tex]
When [tex]x = 2[/tex]
[tex]y = 4x = 4 * 2 = 8[/tex]
So, we have:
[tex](x_1,y_1) =(1,4)[/tex]
[tex](x_2,y_2) =(2,8)[/tex]
Whether she moves backwards or forward, the distance covered remains the same
See attachment for plot