Respuesta :

Given:

The arithmetic sequence is:

10, 12, 14, 16, ...

To find:

The function that generates the given sequence if n is an integer.

Solution:

We have,

10, 12, 14, 16, ...

Here, the first term is 10 and the common difference is:

[tex]d=a_2-a_1[/tex]

[tex]d=12-10[/tex]

[tex]d=2[/tex]

The nth term of an arithmetic sequence is:

[tex]a_n=a+(n-1)d[/tex]

Where, a is the first term, d is the common difference and [tex]n\geq 1[/tex].

Putting [tex]a=10,d=2[/tex] in the above formula, we get

[tex]a_n=10+(n-1)2[/tex]

[tex]a_n=10+2n-2[/tex]

[tex]a_n=8+2n[/tex]

Therefore, the function [tex]a_n=8+2n, n\geq 1[/tex] generates the sequence.