Respuesta :
the polynomial would be:
P(x)=(x-4)(x-6)(x+7)
P(x)=(x²-6x-4x+24)(x+7)
P(x)=(x²-10x+24)(x+7)
P(x)=x³+7x²-10x²-70x+24x+168
P(x)=x³-3x²-46x+168
Answer: P(x)=x³-3x²-46x+168
P(x)=(x-4)(x-6)(x+7)
P(x)=(x²-6x-4x+24)(x+7)
P(x)=(x²-10x+24)(x+7)
P(x)=x³+7x²-10x²-70x+24x+168
P(x)=x³-3x²-46x+168
Answer: P(x)=x³-3x²-46x+168
Answer:
P(x)= x³ - 3 x² - 46 x +168
Step-by-step explanation:
given roots of the polynomial are given as (4,6, -7)
hence the polynomial will be equal to
P(x) = (x-4) (x-6) (x+7)
P(x) = (x-4) (x²+7 x -6 x -42)
P(x) = (x-4) (x²+x -42)
P(x) = x³ + x²-42 x -4 x² -4 x +168
P(x) = x³ - 3 x² - 46 x +168
hence, the required polynomial is P(x) = x³ - 3 x² - 46 x +168