What are the domain, range, and asymptote of h(x) = (0.5)x – 9?

domain: {x | x > 9}; range: {y | y is a real number}; asymptote: y = 9  

domain: {x | x > –9}; range: {y | y is a real number}; asymptote: y = –9  

domain: {x | x is a real number}; range: {y | y > 9}; asymptote: y = 9 

domain: {x | x is a real number}; range: {y | y > –9}; asymptote: y = –9 

Respuesta :

Among the choices provided above the  domain, range, and asymptote of h(x) = (0.5)x – 9 is the below:

domain: {x | x is a real number}; range: {y | y > –9}; asymptote: y = –9 

Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.

Answer:

Option 4 - domain: {x | x is a real number}; range: {y | y > –9}; asymptote: y = –9

Step-by-step explanation:

Given :  [tex]h(x)=(0.5)^x-9[/tex]

To find : What are the domain, range, and asymptote of h(x) ?

Solution :  

Domain of the function is where the function is defined

The given function  [tex]h(x)=(0.5)^x-9[/tex] is an exponential function

So, the domain of the function is,

[tex]D=(-\infty,\infty) , x|x\in \mathbb{R}[/tex]

i.e, The set of all real numbers.

Range is the set of value that corresponds to the domain.

Let  [tex]y=(0.5)^x-9[/tex]

If [tex]x\rightarrow \infty , y\rightarrow -9[/tex]

If [tex]x\rightarrow -\infty , y\rightarrow \infty[/tex]

So, The range of the function is

[tex]R=(-9,\infty) , y|y>-9[/tex]

The asymptote of the function,

Exponential functions have a horizontal asymptote.

The equation of the horizontal asymptote is  when

[tex]x\rightarrow \infty[/tex]

[tex]y=(0.5)^\infty-9[/tex]

[tex]y=-9[/tex]

Therefore, Option 4 is correct.

Domain: {x | x is a real number}; range: {y | y > –9}; asymptote: y = –9