A rectangular vegetable garden will have a width that is 2 feet less than the length, and an area of 48 square feet. If x represents the length, then the length can be found by solving the equation: x(x−2)=48 x(x-2)=48 What is the length, x, of the garden? The length is _____ feet.

Respuesta :

The length is 8 feet 

Answer:

The length is [tex]8[/tex] feet.

Step-by-step explanation:

we know that

the area of the rectangle is equal to

[tex]A=xy[/tex]

where

x is the length side of rectangle

y is the width side of rectangle

In this problem we have

[tex]A=48\ ft^{2}[/tex]

so

[tex]48=xy[/tex] ----> equation A

[tex]y=x-2[/tex] ------> equation B

substitute equation B in equation A

[tex]48=x(x-2)[/tex]

[tex]x^{2}-2x-48=0[/tex]

The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]x^{2}-2x-48=0[/tex]

so

[tex]a=1\\b=-2\\c=-48[/tex]

substitute in the formula

[tex]x=\frac{-(-2)(+/-)\sqrt{-2^{2}-4(1)(-48)}} {2(1)}[/tex]

[tex]x=\frac{2(+/-)\sqrt{4+192}} {2}[/tex]

[tex]x=\frac{2(+/-)14} {2}[/tex]

[tex]x=\frac{2+14} {2}=8\ ft[/tex]  -----> the solution

[tex]x=\frac{2-14} {2}=-6[/tex]