Respuesta :
The slope of AB is
[tex]m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]
[tex]=\frac{14-(-3)}{7-(-10)}[/tex]
[tex]=\frac{17}{17}[/tex]
[tex]=1[/tex]
So the slope of CD is
[tex]-\frac{1}{m}=-\frac{1}{1}=-1[/tex]
The equation for CD is then
[tex]y=-x+b[/tex]
We find [tex]b[/tex] by plugging in the point [tex](5, 12)[/tex]:
[tex]12=-5+b[/tex]
[tex]\rightarrow b=17[/tex]
[tex]\rightarrow y=-x+17[/tex]
The x-intercept is found by setting [tex]y[/tex] equal to 0:
[tex]0=-x+17[/tex]
[tex]\rightarrow x=17[/tex]
which gives [tex](17, 0)[/tex].
For the second part, we just plug in the different points and see if the equation is true:
[tex](-5, 24)\rightarrow 24=-(-5)+17\rightarrow 24=5+17\rightarrow 24=22[/tex]
(doesn't work)
[tex](-2, 19)\rightarrow 19=-(-2)+17\rightarrow 19=2+17\rightarrow 19=19[/tex]
So the answer must be [tex](-2, 19)[/tex].
[tex]m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]
[tex]=\frac{14-(-3)}{7-(-10)}[/tex]
[tex]=\frac{17}{17}[/tex]
[tex]=1[/tex]
So the slope of CD is
[tex]-\frac{1}{m}=-\frac{1}{1}=-1[/tex]
The equation for CD is then
[tex]y=-x+b[/tex]
We find [tex]b[/tex] by plugging in the point [tex](5, 12)[/tex]:
[tex]12=-5+b[/tex]
[tex]\rightarrow b=17[/tex]
[tex]\rightarrow y=-x+17[/tex]
The x-intercept is found by setting [tex]y[/tex] equal to 0:
[tex]0=-x+17[/tex]
[tex]\rightarrow x=17[/tex]
which gives [tex](17, 0)[/tex].
For the second part, we just plug in the different points and see if the equation is true:
[tex](-5, 24)\rightarrow 24=-(-5)+17\rightarrow 24=5+17\rightarrow 24=22[/tex]
(doesn't work)
[tex](-2, 19)\rightarrow 19=-(-2)+17\rightarrow 19=2+17\rightarrow 19=19[/tex]
So the answer must be [tex](-2, 19)[/tex].