Respuesta :
In quadrant IV, we have
[tex]\csc\theta<0[/tex]
and
[tex]\cot\theta<0[/tex]
We can use the identity
[tex]\csc^{2} \theta=1+\cot^{2} \theta[/tex]
[tex]\csc\theta=\pm\sqrt{1+\cot^{2} \theta}[/tex]
Since [tex]\csc\theta<0[/tex], we get
[tex]\csc\theta=-\sqrt{1+\cot^{2} \theta}[/tex]
[tex]\csc\theta<0[/tex]
and
[tex]\cot\theta<0[/tex]
We can use the identity
[tex]\csc^{2} \theta=1+\cot^{2} \theta[/tex]
[tex]\csc\theta=\pm\sqrt{1+\cot^{2} \theta}[/tex]
Since [tex]\csc\theta<0[/tex], we get
[tex]\csc\theta=-\sqrt{1+\cot^{2} \theta}[/tex]
Answer:
cosecα=[tex]-\sqrt{1+cot^{2}\alpha }[/tex]
Step-by-step explanation:
Write the first trigonometric function in terms of the second for theta in the given quadrant:
csc(theta), cot(theta); theta in quadrant IV
csc(theta) = ?
from trigonometric identity , we know that
[tex]cosec^{2} \alpha =1+cot^{2}\alpha \\cosec\alpha ==+/-\sqrt{1+cot^{2}\alpha }[/tex]
since cosecα is negative in the fourth quadrant , we can solve it as thus
cosecα=[tex]-\sqrt{1+cot^{2}\alpha }[/tex]
i have only used alpha in place of theta, aside from that ,the answer is thus the above