Respuesta :

WY1219
f'(x)=(2/3(x^2-2x-1)^-1/3 )*(2x-2) chain rule here

f'(0) is equals to substitute x with 0. Which gives

f'(0)= (2/3(-1)^-1/3)*(-2)

Plug in the calculator, and your answer is ready

The question is an illustration of differential calculus

The value of f'(0) is [tex]\mathbf{f'(0) = -\frac{4}{3} ( -1)^{-\frac 13}}[/tex]

The function is given as:

[tex]\mathbf{f(x) = (x^2 - 2x - 1)^{\frac{2}{3}}}[/tex]

Differentiate f(x) using chain rule.

Let

[tex]\mathbf{u = x^2 - 2x - 1}[/tex]

Differentiate

[tex]\mathbf{\frac{du}{dx} = 2x - 2}[/tex]

Substitute [tex]\mathbf{u = x^2 - 2x - 1}[/tex] in [tex]\mathbf{f(x) = (x^2 - 2x - 1)^{\frac{2}{3}}}[/tex]

[tex]\mathbf{f(u) = u^\frac23}[/tex]

Differentiate

[tex]\mathbf{f'(u) = \frac23u^{-\frac13}}[/tex]

So,

[tex]\mathbf{\frac{dy}{dx} = \frac{du}{dx} \times f'(u)}[/tex]

This gives

[tex]\mathbf{\frac{dy}{dx} = (2x - 2) \times \frac 23u^{-\frac 13}}[/tex]

Substitute [tex]\mathbf{u = x^2 - 2x - 1}[/tex]

[tex]\mathbf{\frac{dy}{dx} = (2x - 2) \times \frac 23(x^2 -2x -1)^{-\frac 13}}[/tex]

[tex]\mathbf{\frac{dy}{dx} = \frac 23(2x - 2) (x^2 -2x -1)^{-\frac 13}}[/tex]

So, we have:

[tex]\mathbf{f'(x) = \frac 23(2x - 2) (x^2 -2x -1)^{-\frac 13}}[/tex]

Substitute 0 for x

[tex]\mathbf{f'(0) = \frac 23(2 \times 0 - 2) (0^2 -2 \times 0 -1)^{-\frac 13}}[/tex]

[tex]\mathbf{f'(0) = \frac 23( - 2) (0 -0 -1)^{-\frac 13}}[/tex]

[tex]\mathbf{f'(0) = \frac 23( - 2) ( -1)^{-\frac 13}}[/tex]

[tex]\mathbf{f'(0) = -\frac{4}{3} ( -1)^{-\frac 13}}[/tex]

Read more about differentiation at:

https://brainly.com/question/24062595