Using Hooke's law, F spring=k delta x, find the distance a spring with an elastic constant of 4 N/cm will stretch if a 2 newton force is applied to it.
A.) 2 cm
B.) 1/2 cm
C.) 4 cm
D.) 8 cm

Respuesta :

Hello!

Using Hooke's law, F spring=k delta x, find the distance a spring with an elastic constant of 4 N/cm will stretch if a 2 newton force is applied to it.

Data:

Hooke represented mathematically his theory with the equation:

F = K * Δx  

On what:

F (elastic force) = 2 N

K (elastic constant) = 4 N/cm

Δx (deformation or elongation of the elastic medium or distance from a spring) = ?

Solving:


[tex]F = K * \Delta{x}[/tex]

[tex]2\:N = 4\:N/cm*\Delta{x}[/tex]

[tex]4\:N/cm*\Delta{x} = 2\:N[/tex]

[tex]\Delta{x} = \dfrac{2\:\diagup\!\!\!\!\!N}{4\:\diagup\!\!\!\!\!N/cm}[/tex]

simplify by 2

[tex]\Delta{x} = \dfrac{2}{4}\frac{\div2}{\div2}[/tex]

[tex]\boxed{\boxed{\Delta{x} = \dfrac{1}{2}\:cm}}\Longleftarrow(distance)\end{array}}\qquad\checkmark[/tex]

Answer:

B.) 1/2 cm

_______________________

I Hope this helps, greetings ... Dexteright02! =)