Respuesta :
Answer:
(–1, 1)
(4, –2)
Step-by-step explanation:
Let
(x,y) ----> the coordinates of point C
Applying the Pythagoras Theorem
[tex](-1-4)^2+(-2-1)^2=(x-4)^2+(y-1)^2+(x+1)^2+(y+2)^2[/tex]
step 1
Find the possibles values of x
[tex](-1-4)^2=(x-4)^2+(x+1)^2\\\\25=x^{2}-8x+16+x^{2}+2x+1\\\\2x^{2}-6x-8=0[/tex]
Simplify
[tex]x^{2}-3x-4=0[/tex]
Solve the quadratic equation
[tex]x^{2}-3x-4=(x+1)(x-4)[/tex]
The values of x are
x=-1 and x=4
step 2
Find the possibles values of y
[tex](-2-1)^2=((y-1)^2+(y+2)^2\\\\9=y^{2}-2y+1+y^{2}+4y+4\\\\2y^{2}+2y-4=0[/tex]
Simplify
[tex]y^{2}+y-2=0[/tex]
Solve the quadratic equation
[tex]y^{2}+y-2=(y+2)(y-1)[/tex]
The values of y are
y=-2, y=1
therefore
The possibles coordinates of point C are
(-1,1),(4,-2)
Answer:
(–1, 1)
(4, –2)
Step-by-step explanation:
Given that the hypotenuse of a right triangle has endpoints A(4, 1) and B(–1, –2), then two triangles can be formed (see figure attached).
The vertex of the right angle in each triangle are on points (-1, 1) and (4, -2), as can be seen in the figure.
