Respuesta :

Answer:

See explanation for matching pairs

Step-by-step explanation:

Equations

(1)

[tex]x - y = 25[/tex]

[tex]2x + 3y = 180[/tex]  

(2)

[tex]2x - 3y = -5[/tex]

[tex]11x + y = 550[/tex]  

(3)

[tex]x - y = 19[/tex]

[tex]-12x + y = 168[/tex]

Solutions

[tex](-17,-36)[/tex]

[tex](47, 33)[/tex]

[tex](51, 26)[/tex]

Required

Match equations with solutions

(1) [tex]x - y = 25[/tex] and [tex]2x + 3y = 180[/tex]

Make x the subject in: [tex]x - y = 25[/tex]

[tex]x = 25 + y[/tex]

Substitute [tex]x = 25 + y[/tex] in [tex]2x + 3y = 180[/tex]

[tex]2(25 + y) + 3y = 180[/tex]

[tex]50 + 2y + 3y = 180[/tex]

[tex]50 + 5y = 180[/tex]

Collect like terms

[tex]5y = 180-50[/tex]

[tex]5y = 130[/tex]

Solve for y

[tex]y =26[/tex]

Recall that: [tex]x = 25 + y[/tex]

[tex]x = 25 + 26[/tex]

[tex]x = 51[/tex]

So:

[tex](x,y) = (51,26)[/tex]

(2)  [tex]2x - 3y = -5[/tex] and [tex]11x + y = 550[/tex]

Make y the subject in [tex]11x + y = 550[/tex]

[tex]y = 550 - 11x[/tex]

Substitute [tex]y = 550 - 11x[/tex] in [tex]2x - 3y = -5[/tex]

[tex]2x - 3(550 - 11x) = -5[/tex]

[tex]2x - 1650 + 33x = -5[/tex]

Collect like terms

[tex]2x + 33x = -5+1650[/tex]

[tex]35x = 1645[/tex]

Solve for x

[tex]x = 47[/tex]

Solve for y in [tex]y = 550 - 11x[/tex]

[tex]y = 550 - 11 * 47[/tex]

[tex]y = 550 - 517[/tex]

[tex]y = 33[/tex]

So:

[tex](x,y) = (47,33)[/tex]

(3)

[tex]x - y = 19[/tex]  and [tex]-12x + y = 168[/tex]

Make y the subject in [tex]-12x + y = 168[/tex]

[tex]y = 168 + 12x[/tex]

Substitute [tex]y = 168 + 12x[/tex] in [tex]x - y = 19[/tex]

[tex]x - 168 - 12x = 19[/tex]

Collect like terms

[tex]x -12x = 168 + 19[/tex]

[tex]-11x = 187[/tex]

Solve for x

[tex]x = -17[/tex]

Solve for y in [tex]y = 168 + 12x[/tex]

[tex]y =168-12 *17[/tex]

[tex]y =-36[/tex]

So:

[tex](x,y) = (-17,-36)[/tex]