Question 13
Find the volume of the prism.

Answer:
[tex]\boxed {\boxed {\sf B. \ 324 \ cm^3}}[/tex]
Step-by-step explanation:
The volume of a triangular prism is the product of the area of the triangular cross-section (B) and the height (h).
First, let's find the area of the triangular cross-section/the end of the triangle. The area of a triangle is:
[tex]B= \frac{1}{2} b*h[/tex]
The base of the triangle base (not the prism) is 6 centimeters and the height is 9 centimeters.
[tex]B= \frac{1}{2} (6 \ cm)(9 \ cm)[/tex]
Multiply the numbers in parentheses.
[tex]B= \frac{1}{2}(54 \ cm^2)[/tex]
Multiply by 1/2 or divide by 2.
[tex]B= 27 \ cm^2[/tex]
Now we know the area of the cross-section or base is 27 square inches. The height of the prism is 12 centimeters.
Substitute the values into the volume formula for a triangular prism.
[tex]V= 27 \ cm^2 * 12 \ cm[/tex]
Multiply.
[tex]V= 324 \ cm^3[/tex]
The volume of the prism is 324 cubic centimeters and choice B is correct.