Answer:
[tex]Varianve = 3.842[/tex]
[tex]SD = 1.960[/tex]
Step-by-step explanation:
Given
See attachment for data
First, calculate [tex]\sum x^2[/tex]
[tex]\sum x^2 = 18^2 + 17^2 +20^2 + 19^2 + 20^2 + 16^2 + 16^2 + 15^2 + 18^2+14^2 +19^2 + 19^2+18^2+17^2 + 16^2+20^2+16^2+18^2+14^2+20^2[/tex]
[tex]\sum x^2 = 6198[/tex]
Calculate [tex]\sum x[/tex]
[tex]\sum x = 18 + 17 +20 + 19 + 20 + 16 + 16 + 15 + 18+14 +19 + 19+18+17 + 16+20+16+18+14+20[/tex]
[tex]\sum x = 350[/tex]
So, we have:
[tex]SS_x = \sum x^2 -\frac{(\sum x)^2}{n}[/tex]
[tex]SS_x = 6198 -\frac{350^2}{20}[/tex]
[tex]SS_x = 6198 -\frac{122500}{20}[/tex]
[tex]SS_x = 6198 -6125[/tex]
[tex]SS_x = 73[/tex]
Solving (a): The variance
[tex]Varianve = \frac{SS_x}{n-1}[/tex]
[tex]Varianve = \frac{73}{20-1}[/tex]
[tex]Varianve = \frac{73}{19}[/tex]
[tex]Varianve = 3.842[/tex]
Solving (b): The standard deviation
[tex]SD = \sqrt{Variance}[/tex]
[tex]SD = \sqrt{3.842}[/tex]
[tex]SD = 1.960[/tex]