Answer:
[tex]\text{A. 0.032}[/tex]
Step-by-step explanation:
Let [tex]\sigma_p[/tex] be the standard error of the distribution of sample proportions.
Formula:
[tex]\sigma_p=\sqrt{\frac{P(1-P)}{n}}[/tex], where [tex]P[/tex] is the population parameter and [tex]n[/tex] is sample size.
What we're given:
- [tex]P[/tex] of 0.1
- [tex]n[/tex] of 90
Substituting given values, we get:
[tex]\sigma_p=\sqrt{\frac{0.1(1-0.1}{90}},\\\sigma_p=\sqrt{\frac{0.1\cdot 0.9}{90}},\\\sigma_p=\sqrt{0.001}\approx\boxed{\text{A. 0.032}}[/tex]