What is the cube root of 216x^9y^18 ?
A: 4x^3y^6
B: 6x^3y^6
C: 72x^6y^15
D: 213x^6y^15

Answer:
option B
Step-by-step explanation:
Cube root of x means [tex]x^{\frac{1}{3}[/tex]
Formulas used :
[tex](a^x)^y = a^{xy}[/tex]
[tex](b^3)^{\frac{1}{3}} = b[/tex]
Therefore cube root of :
[tex](216 x^9 y^{18})^{\frac{1}{3}} = (6^3 \times (x^3)^3 \times (y^6)^3)^{\frac{1}{3}}[/tex]
[tex]= (6^3)^{\frac{1}{3}} \times ((x^3)^3)^{\frac{1}{3}} \times ((y^6)^3)^{\frac{1}{3}}[/tex]
[tex]= 6 \times x^3 \times y^6[/tex]
[tex]=6x^3y^6[/tex]