Respuesta :
The fourth term of the given expansion is [tex]-280x^{3}[/tex].
What is binomial expansion?
The binomial expansion is used to expand and write the terms which are equals to the natural number exponent of the sum or differences of two terms.
The general term of the binomial expansion is given by
[tex]T_{r+1} =nC_{r} x^{n-r} y^{r}[/tex]
According to the given question
We have,
A binomial expression, [tex](1-2x)^{n}[/tex]
and, the binomial coefficients are taken from the row of Pascal's triangle 1 6 15 20 15 6 1
⇒ n = 7
Therefore,
The fourth term of the expansion of [tex](1-2x)^{n}[/tex] is given by
[tex]T_{3+1} = 7C_{3} 1^{7-3} (-2x)^{3}[/tex]
[tex]T_{4} =\frac{(7)(6)(5)(4)(3!)}{3!(4)(3)(2)} (1)(-2x)^{3}[/tex]
[tex]T{4} = -280x^{3}[/tex]
Hence, the fourth term of the given expansion [tex](1-2x)^{3}[/tex] is [tex]-280x^{3}[/tex].
Learn more about the binomial expansion here:
https://brainly.com/question/12249986
#SPJ2